

SONIC**WALL**®

WHITE PAPER

Critical Security Threats and the Need for ZTNA

How Evolving Cyberattacks Demand a Zero Trust Approach

Table of Contents

1	Executive Summary	3
2	Evolving Threat Landscape	4
3	Key Threat Vectors	5
4	Al-Driven Cyber Threats	8
5	Zero Trust: Principles & Benefits	8
6	ZTNA in Action: How SonicWall Helps	9
7	Recommendations & Best Practices	10
8	Conclusion	11
3	Appendix: Practical Steps & Glossary	11

Executive Summary

Cyber threats have become more frequent and sophisticated, targeting organizations of all sizes across all industries. From business email compromise to ransomware and privilege escalation, adversaries are capitalizing on the weaknesses of traditional, perimeter-based defenses. Recent data from SonicWall reveals:

- Business Email Compromise is tied to 1 in every 3 insurance claims.
- Ransomware continues to rise, with a 259% increase in certain regions (e.g., Latin America) and 198 million patient records affected in 2024 alone.
- Server-side request Forgery (SSRF) has seen a 452% surge in incidents, driven partly by Al-powered vulnerability scanning.

These figures underscore that attackers can, and will, gain initial access and move laterally. Once inside, they rely on tactics like privilege escalation or "living-offthe-land" (LOLBins) to deepen control without triggering alerts. Meanwhile, employees increasingly work remotely using unmanaged mobile devices, broadening the attack surface.

Zero Trust Network Access (ZTNA) is an essential strategy: it presumes no implicit trust—whether a user is on the corporate LAN or remote—and continuously verifies identity, device posture, and risk signals. SonicWall's Cloud Secure Edge solution aligns with this model, offering segmentation, device trust, threat intelligence, and real-time visibility to mitigate these rising threats.

2599

Ransomware increase in certain regions

million patient records affected

Evolving Threat Landscape

Historically, organizations relied on strong perimeter defenses—firewalls designed to keep threats "outside." In today's cloud-enabled, hybrid-work environment, users are often outside the protection of the corporate network—making them more vulnerable to phishing attacks, stolen credentials, and application exploits. Once inside, attackers can move laterally with ease if the network lacks proper segmentation and strong identity verification.

Key Drivers of Increased Threats

Hybrid Work

Employees and contractors access systems from anywhere—often using their own personal devices.

Proliferation of Cloud Services

Mission-critical apps (e.g., Microsoft 365, Google Workspace) must be accessible over the internet, widening the potential attack surface.

Automation & AI

Adversaries use large language models (LLMs) to develop sophisticated phishing emails, generate exploit scripts at scale, and automate vulnerability discovery.

Key Threat Vectors

3.1 Business Email Compromise (BEC)

BEC is a highly effective social engineering tactic where **criminals impersonate** a trusted individual—often an executive—to trick employees or partners into **transferring funds** or **revealing sensitive data**.

Impact

- A primary driver of financial losses; tied to 1 in 3 cyber insurance claims in 2024.
- Difficult to detect because attackers leverage legitimate email accounts (stolen credentials or forwarding rules).

Common Attack Pattern

- Attackers gain initial email account access (phishing or password reuse).
- Set up stealth forwarding rules, sometimes deleting forwarded messages from the victim's inbox.
- Await financial transactions (invoices, wire transfers) to divert or impersonate internal approvals.

Zero Trust Mitigation

- Enforce adaptive MFA on all corporate email access.
- Restrict email access to managed devices or devices with a valid certificate and acceptable posture.
- Monitor for anomalous login locations (a.k.a. "impossible travel" flags).

rise in ransomware attacks

million patient records affected

3.2 Malware & Ransomware

Ransomware encrypts data and demands payment for decryption keys, while malware can steal information or establish persistence for deeper breaches.

Recent Trends

- There was a 259% rise in ransomware attacks in some regions.
- 198 million healthcare patient records were affected by ransomware in 2024 alone.
- · Attackers use EDR evasion techniques, often leveraging PowerShell (LOLBins) to avoid detection.

Propagation Tactics

- · Phishing links or attachments deliver malicious payloads.
- Exploiting unpatched systems.
- Lateral movement across flat networks.

Zero Trust Mitigation

- Micro-segmentation and access control ensure an infected endpoint cannot spread ransomware laterally.
- Automated URL filtering blocks malicious sites.
- Endpoint posture checks verify that devices run up-to-date EDR and patches before granting network access.

3.3 Server-Side Request Forgery (SSRF)

SSRF attacks trick web apps into making unauthorized requests to internal services. Many frameworks (WordPress, Drupal, etc.) have had SSRF vulnerabilities, allowing attackers to:

- Exfiltrate internal data.
- · Scan internal network ports.
- · Abuse "metadata" services in cloud environments (e.g., AWS, Azure).
- 452% Growth:
 - Modern Al-driven tools can mass-scan for SSRF entry points.
 - Once found, attackers pivot within a supposedly "internal" network.

Zero Trust Mitigation:

- Limit access to internal application services only for authenticated, authorized users and devices.
- · Continuous patching of web frameworks.
- App-layer controls (e.g., WAF) integrated with a Zero Trust architecture to deny unauthorized internal requests.

3.4 Mobile Attack Surface

As employees increasingly rely on smartphones and tablets for corporate tasks, attackers see an opening via:

- Malicious QR codes, fake productivity apps, or phishing SMS.
- MFA fatigue—bombarding users with repeated MFA requests until they approve out of habit.
- Unpatched operating systems or jailbroken devices lacking security controls.
- Zero Trust Mitigation:
 - Restrict application access to devices meeting posture requirements (e.g., not jailbroken, security patches up-to-date).
 - Geolocation or "impossible travel" analysis to detect unusual logins.
 - Conditional policies that may limit certain high-risk operations (e.g., code repository access) from mobile devices.

3.5 Privilege Escalation & Living-off-the-Land (LOLBins)

Attackers assume initial compromise is inevitable—often through stolen credentials or insider threats. Once inside:

Privilege Escalation

- Exploit OS vulnerabilities for admin privileges.
- In 2024, 38% of exploited Microsoft vulnerabilities were for elevating privileges.

Living-off-the-Land (LOLBins)

- Tools like PowerShell or schtasks.exe come pre-installed on Windows, making them hard to detect.
- Attackers can download additional malware, create backdoors. or exfiltrate data without using "traditional" malicious executables.

Zero Trust Mitigation

- Enforce least privilege: normal users do not get admin rights unless expressly granted.
- Monitor baseline usage of built-in tools to spot anomalies (e.g., suspicious PowerShell commands).
- Micro-segmentation ensures that even with elevated privileges on one system, attackers cannot traverse to critical assets without re-authentication and posture checks.

Al-Driven Cyber Threats

Attackers increasingly leverage large language models and Al automation to:

- Generate highly sophisticated phishing campaigns that mimic genuine communication.
- · Automate SSRF and scanning for known exploits.
- Churn out scripts to evade endpoint detection.

Zero Trust is especially critical here because Al makes it faster and cheaper for attackers to launch **tailored** attacks at scale. Human defenders, meanwhile, benefit from **Al/ML-powered security tools**—like those in SonicWall's threat detection engine—that identify **unusual patterns** in network or user behavior.

Zero Trust: Principles & Benefits

Zero Trust assumes **no implicit trust**—inside or outside the corporate LAN. Instead, **every** request to access data or an application undergoes the following:

- 1. User Authentication (e.g., strong MFA tied to role-based policies)
- 2. Device Verification (posture checks, certificates, OS patch level)
- 3. Continuous Authorization (session-based risk scoring, anomaly detection)

Benefits

- Reduced Attack Surface: Attackers cannot freely move once inside.
- Stronger MFA: This minimizes the success of credential theft or phishing.
- Comprehensive Visibility: IT can see—and control—who is accessing what, from where, and on which device.

ZTNA in Action: How SonicWall Helps

SonicWall has developed a complete solution set across endpoint security, identity services, and threat intelligence that delivers **Zero Trust** access for real-time risk assessment.

6.1 SonicWall Cloud Secure Edge (CSE)

Unified Zero Trust Platform: Integrates identity, endpoint posture checks, and application access.

Policy-Driven Access: Granular **allow/deny** rules based on user, device, location, and resource sensitivity.

Dynamic Threat Detection: SonicWall threat research continuously updates detection signatures to block malicious URLs, suspicious files, and known exploit techniques (e.g., SSRF patterns).

6.2 Next-Generation Firewalls & Advanced Threat Protection

Layered Security: SonicWall NGFWs perform **deep packet inspection**, **SSL decryption**, **and advanced threat analysis**.

Captured Telemetry: Cloud intelligence from millions of data points worldwide helps identify new malware variants and malicious domains in real time.

Recommendations & Best Practices

Adopt a "Breach Mindset"

- · Assume attackers already have initial access.
- · Build micro-segmentation to minimize damage.

Enforce Strong MFA & Device Posture

 Eliminate reliance on static passwords and check device health (patch, AV/EDR running).

Monitor & Analyze User Behavior

· Detect anomalies like MFA fatigue approvals or suspicious PowerShell usage.

Regular Patch Management

· Close known vulnerabilities quickly, especially on internet-facing services.

Comprehensive Backup Strategy

- · Ransomware thrives on unprotected backups.
- · Secure offline or read-only copies are essential.

Leverage Threat Intelligence

· Use real-time data feeds (like SonicWall's) to block emerging threats.

Educate Your Workforce

· Frequent security awareness training prevents phishing, especially BEC.

Conclusion

Cyber threats—BEC, ransomware, SSRF, privilege escalation, mobile exploits—are rising in frequency and potency. Attackers exploit implicit trust wherever it's given, leveraging AI to scale and customize their attacks.

Zero Trust Network Access with continuous verification at every step is the proven strategy to mitigate these risks and address security gaps of traditional networking solutions. By combining strong identity management, device posture, network segmentation, and real-time threat intelligence, organizations can dramatically reduce the chance of a catastrophic breach.

SonicWall is dedicated to helping organizations adopt a holistic Zero Trust posture. Through solutions like Cloud Secure Edge, Next-Gen Firewalls, and SonicSentry, SonicWall integrates robust threat research, simplified policy management, and advanced analytics to defend critical assets against modern cyber threats.

Appendix: Practical Steps & Glossary

9.1 Practical ZTNA Implementation Steps

- 1. Identify & Classify Assets: Catalog your applications and data, mapping out who needs access.
- 2. Deploy a Pilot: Start with a pilot group (e.g., specific department) to fine-tune Zero Trust policies.
- 3. Establish Device Posture Requirements: Define minimum OS versions, endpoint protection standards, patch levels, etc.
- 4. Set Up MFA: Use app- or token-based MFA (avoid basic SMS if possible); integrate with IDP solutions.
- 5. Implement Micro-Segmentation: Separate critical databases or servers so that an intruder in one segment can't traverse to another.
- 6. Continuously Monitor: Use SIEM or SOC resources to watch for anomalous patterns and refine policies.

9.2 Glossary

- BEC (Business Email Compromise): Impersonation of a trusted email account to initiate fraud.
- MFA (Multi-Factor Authentication): Requires two or more factors (e.g., password + token) for access.
- SSRF (Server-Side Request Forgery): Exploits an app's trust in itself to call internal services.
- LOLBins (Living-off-the-Land Binaries): Legitimate OS utilities (PowerShell, etc.) used maliciously to avoid detection.
- Zero Trust Network Access (ZTNA): A security framework that requires continuous verification of every user or device attempting to access resources.

For more information

Visit <u>SonicWall.com</u> to explore our <u>Zero Trust solutions</u> or learn more about how you can start your Zero Trust journey with our eBook, <u>Zero Trust Made Simple: A Practical Guide for Modern Security.</u>

SonicWall, Inc.

1033 McCarthy Boulevard | Milpitas, CA 95035 | Refer to our website for additional information.

© 2025 SonicWall Inc. ALL RIGHTS RESERVED.

SonicWall is a trademark or registered trademark of SonicWall Inc. and/or its affiliates in the U.S.A. and/or other countries. All other trademarks and registered trademarks are property of their respective owners. The information in this document is provided in connection with SonicWall Inc. and/or its affiliates' products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of SonicWall products. Except as set forth in the terms and conditions as specified in the license agreement for this product, SonicWall and/or its affiliates assume no liability whatsoever and disclaims any express, implied or statutory warranty relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or non- infringement. In no event shall SonicWall and/or its affiliates be liable for any direct, indirect, consequential, punitive, special or incidental damages (including, without limitation, damages for loss of profits, business interruption or loss of information) arising out of the use or inability to use this document, even if SonicWall and/or its affiliates have been advised of the possibility of such damages. SonicWall and/or its affiliates make no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. SonicWall Inc. and/or its affiliates do not make any commitment to update the information contained in this document.

Solution Brief - SonicPlatform

