

BEST PRACTICES GUIDE:

Nimble Storage Best Practices

for Microsoft SQL Server

N I M B L E S T O R A G E B E S T P R A C T I C E S G U I D E : M I C R O S O F T S Q L S E R V E R 2

Summary

Microsoft SQL Server databases provide the data storage back end for mission-critical applications.

Therefore, it’s critical to protect these applications to ensure data integrity and availability for

transaction processing. Nimble Storage arrays provide I/O optimization and protection features that

greatly benefit SQL Server implementations.

It is important to first understand some of the internal I/O processes that SQL Server uses to store data

on disk. Then you can use this fundamental understanding to implement best practices for provisioning

a database storage design that will optimize performance and eliminate database backup windows.

Using these best practices can also dramatically reduce recovery time objectives for full databases as

well as individual database objects and data after user error and system failures.

How SQL Server Writes Data to Disk

Database Basics

Databases are primarily composed of tables of data stored in rows. Each column represents a specific

field in the row. Each row represents one record in a table, based on the table design. For example, a

basic design for a customer table would include the customer’s first name, last name and some unique

identifier such as a customer

ID to differentiate between customers with the

same name (e.g.. John Smith). Our columns

would be CustomerID, FirstName, and

LastName, while each row represents a single

customer.

Databases typically consist of dozens and even

hundreds of tables that store specific types of information such as Customers, Products, Orders, etc.

Over time our database will grow as we add more data to the tables. It is important to plan and monitor

our database to provide the quickest response time to the end-users and to ensure that we properly

protect the data assets from loss.

Write-Ahead Logging (WAL)

To reduce the risk of data loss, Microsoft SQL Server writes data to disk using the Write-Ahead Logging

(WAL) algorithm which is common to all major database platforms. The algorithm is designed as a fail-

safe process that ensures that interrelated database changes are written completely as a single logical

unit of work that can be undone if any of the individual changes fails for any reason. WAL adds a

transaction log file to the write process to act as a witness to the database changes that will take place

and add a layer of protection ensuring that two files have to agree before the data can be trusted.

Customers Table

CustomerID First Name Last Name

89437392 John Smith

27485839 Diane Jones

75839544 Ellen Davis

33258837 John Smith

61382475 Roger Williams

N I M B L E S T O R A G E B E S T P R A C T I C E S G U I D E : M I C R O S O F T S Q L S E R V E R 3

For example, let’s assume that we have a banking

database that contains the account balances of

our customers. Two of the customers have $100

in their accounts and one of the customers wants

to transfer $50 to the other customer. SQL Server

will create an entry in the database transaction log

file that contains two steps, a debit of $50 from

the first customer and a credit of $50 to the other

customer. When SQL Server tells the operating system to write the transaction, it also tells it to make

sure that no hardware caches the write in memory and that it goes directly to a disk. After the

transaction log write completes, SQL Server can update the database file to reflect the new first

customer balance of $50 and then update the database file to $150 for the second customer.

If the system crashed in the middle of these SQL Server database writes, the database engine can use

the transaction log to undo any partial writes and gracefully complete the transaction writes. Continuing

with our money transfer example, when the database restarts it first checks to see if any transactions

have been partially written to the database file. It will see that the first customer was debited $50, but

the second customer was not credited $50. SQL Server will then use the logged transaction to credit

the second customer’s account with $50 and complete the money transfer. If database engines did

not use this algorithm, a system crash could leave one customer missing $50 and both customers

wondering where the money disappeared. Thus, the write-ahead logging algorithm provides a critical

feature for ensuring application consistency for database applications.

SQL Server File Writes

When SQL Server writes any changes to transaction log or database files, it uses fixed-length blocks of

data in order to balance system performance and flexibility. The smallest unit of write that SQL Server

uses is an 8 KB Page that can contain one or more rows from a table. For example, if we add a row to

our customer’s database, SQL Server will first

write an 8 KB page to the transaction log file and

then use the Lazy Writer or Checkpoint process to

write the 8 KB changes to the database file.

When a backup or Microsoft VSS snapshot is

triggered, SQL Server will also trigger a write of any

pending changes to flush data pages to disk. This

places the database into a quiesced state that is

safe to back up before the backup or snapshot

occurs.

N I M B L E S T O R A G E B E S T P R A C T I C E S G U I D E : M I C R O S O F T S Q L S E R V E R 4

Storage Layout Best Practices

Use Nimble Protection Manager (NPM)

Nimble Protection Manager (NPM) provides an interface between a Nimble Storage array and the

native VSS interfaces of the Windows operating system. This interface places the application data into

a consistent state that is safe for backup and recovery, ensuring that the database can safely start and

be assured that the data is in a form that SQL Server can read and trust when recovering data after an

outage or user error. You can download Nimble Protection Manager from the Nimble Storage support

web site.

Computer servers continuously write system state and data changes to their storage devices. It’s

important that when a snapshot is taken, pending writes are flushed and the volume quiesced in a

consistent state so that any later restore to that snapshot allows the application to continue working

properly. The two primary consistent states are called crash consistent and application consistent.

 Crash consistency generally refers to the ability for a system to crash and allow the operating

system to boot and find its files and core functionality, in a good readable state.

 Application consistency takes additional steps to ensure that an application’s data is safe. It is

often called transactional consistency when referring to database applications such as

Microsoft™ SQL Server.

When you provision storage on a Nimble Storage array, you select one or more protection schedules

that specify the intervals at which your data is protected to that point-in-time. When the scheduled time

arrives, the Nimble array triggers the Nimble Protection Manager to coordinate a quiesce using VSS.

After all writes are quiesced the array performs the snapshot.

Store Database and Transaction Log Files on

Separate Volumes

Nimble Storage arrays have redundant hardware

and are highly available by design. They also

include high performance auto-tuning features that

actively analyze I/O usage patterns. When the

Nimble array finds a hot spot in the files, it will

optimize them and use the solid state disk for

caching high read locations. Because they have

different performance characteristics and will

therefore tune differently, you should separate

database and transaction logs on different volumes. For example, transaction logs have heavy

sequential write activity while database files have more random read/write activity.

N I M B L E S T O R A G E B E S T P R A C T I C E S G U I D E : M I C R O S O F T S Q L S E R V E R 5

Use SQL Server Performance Policy

The Nimble Storage array includes performance

profiles that pre-configure new volumes using

optimized configuration settings specific for

different usage scenarios. For example, the SQL

Server performance policy uses optimum block

sizes to provide the best performance for SQL

Server transaction log and database volumes. As you can see in the screen shot, the SQL Server

performance policy also includes in-line compression and high performance caching.

Use Protection Templates

Nimble Storage arrays provide Protection

Templates that consist of pre-configured

schedules for snapshots, replication, and retention

policies. When creating a new volume collection

you can select a Protection Template that will

insert a default schedule based on existing

business rules. For example, you could create

Protection Templates based on the criticality of the

application data. Less critical applications such as

middleware servers can use longer snapshot

schedule intervals (4 hours) and shorter retention schedules (10 days). However, more critical

applications such as databases whose data frequently changes will usually require shorter snapshot

schedule intervals (15 minutes or less) and longer retention schedules (90 days). In this case you will

want to use a Protection Template with shorter snapshot schedules and longer retention schedules.

Using Protection Templates reduces the amount of work required to create storage volumes and

provide consistency for managing similar applications.

Use Volume Collections

A Volume Collection allows you to schedule the frequency and

retention of snapshots as well as replication to other Nimble

Storage arrays. A volume collection can coordinate protection

activities between separate yet related volumes—such as a

database’s transaction log and database file volumes—to

ensure that databases are snapshotted with application

consistency. The volume collection integrates with Microsoft

VSS, which triggers them to flush SQL Server pending database

writes to disk and pause the write activity of the transaction log

and database files into a momentarily quiesced state. This

ensures the data integrity of the point-in-time snapshot backup.

N I M B L E S T O R A G E B E S T P R A C T I C E S G U I D E : M I C R O S O F T S Q L S E R V E R 6

Management of a volume collection allows you to quickly change protection schedules for all related

volumes. For example, suppose that you have created a SQL Server database protection schedule for

several databases on a SQL Server supporting an eCommerce application. It is common for databases

to be partitioned into different data files with differing performance characteristics. The initial business

requirements called for a configuration based on hourly snapshots for backup and replication off-site

every six hours for disaster recovery. As business has increased, management has decided that the

database has become more critical and thus needs more frequent backup and more frequent

replication to reduce potential data loss. You can change the protection schedule for all of the

associated files for the database at the same time by changing the Volume Collection properties, thus

saving time and eliminating configuration errors that might inhibit recoverability.

Prefer Hardware Snapshots versus Software and SQL Server Snapshots

Snapshots are the basis for creating point-in-time versions of storage volumes and backups that can

be mounted and accessed just like any other iSCSI volume. You can create snapshots at different

layers of virtualization architectures, including within the Guest Software, within the Host Software and

within the Storage Hardware. Connecting data volumes directly to the guest allows NPM to trigger

snapshots that use the Nimble Storage hardware provider rather than inefficient software-based

snapshots.

Nimble Storage arrays provide highly efficient hardware snapshot functionality that is optimized by

Nimble’s inline compression and block incremental efficiencies. This differs from operating system

native software snapshots such as Microsoft™ VSS, which are not efficiently stored within their

volumes. Software snapshots don’t take advantage of Nimble Storage array optimized snapshot

backup functionality. The following diagram shows the differing locations in which snapshots are

stored. It is preferable to use hardware-based snapshots in the Nimble Storage array that take

advantage of performance, in-line compression, and cloning capabilities rather than performing

software snapshots with far less flexibility.

Beginning with SQL Server 2005 Enterprise, SQL Server also contains snapshot features that require

SQL scripting skills. These types of SQL Server application-native snapshots are stored within the

database files and use copy-on-write methodology that is very inefficient when compared with Nimble

Storage array snapshot backups. Using Nimble Storage arrays, Database Administrators can perform

database snapshots much more frequently and with more granular recovery points. These maintain the

N I M B L E S T O R A G E B E S T P R A C T I C E S G U I D E : M I C R O S O F T S Q L S E R V E R 7

same recovery methods available as SQL-native snapshots. Using Nimble array snapshots for

restoration, reporting, and other use cases is covered in the Better SQL Server Recovery section.

Better SQL Server Backups

SQL Server databases use the Write Ahead Logging algorithm to protect against system failure, and

Nimble Storage arrays are hardware redundant to protect against storage failure. However, databases

should be backed up from time to time to protect against logical failures such as accidental deletion of

data. SQL Server provides several native features for backup and you can take advantage of Nimble

Storage arrays for enhanced snapshot backup to avoid interruption of service.

The following timelines and graphs show the relative impacts of the different SQL Server backup and

restoration methodologies after a database failure. These demonstrate the recovery point and recovery

time associated with restoring a database back to full service. These timelines make certain

assumptions that the hardware, operating system, and application software are unaffected by the

outage and that the database failed because of a logical failure; an erroneous deletion of tables or

files, for example. The system load metric is a composite of total production system involvement in the

backup process, which includes the CPU, Memory, System Bus, Network, and Storage sub-system.

Production database processing must compete with the system load imposed by the backup process,

and reduces the transaction processing performance.

SQL Server Backup to Disk or Tape

The Traditional Backup to Disk/Tape timeline shows a typical daily backup schedule which performs a

full daily database backup followed by hourly transaction log backups. We can see that the system load

is high during the full backup when entire database and transaction log are copied to a backup disk or

tape device. Later we see spikes hourly when the transaction log backup copies are made. Finally, the

transaction logs are truncated on the successful completion of either the full or transaction log backup.

Recovery of a database begins with restoration of the most recent successful full backup, followed by

restoration of each transaction log backup. The restoration time is considerable because all database

objects (Tables, Indexes, Security, etc.) must be copied from the backup media to the server. Thus, if it

takes 5 hours to back up, then it will take at least 5 hours to restore. Transaction logs are cumulative,

so they can be restored as soon as the previous log completes restoration.

N I M B L E S T O R A G E B E S T P R A C T I C E S G U I D E : M I C R O S O F T S Q L S E R V E R 8

SQL Server Backup Using Nimble Storage

Nimble Storage arrays are optimized to perform full database snapshot backups that minimize the

impact on the production system. The Nimble array integrates with Microsoft VSS using Nimble

Protection Manager (NPM) to periodically request the database to flush pending database writes to

disk. Then the array creates an optimized snapshot. Recovery of a database using Nimble Storage

snapshots is a very quick process in which an administrator creates a clone of the snapshot and

mounts it directly for data restoration.

SQL Server Database Recovery Models

SQL Server database recovery models were created to simplify the administration of databases. It’s

important to understand recovery models, because they affect your backup process. There are three

recovery models available, Full, Bulk-Logged, and Simple. The primary differences between the

recovery models are whether or not transactions are logged and if they truncate the transaction log

when a checkpoint occurs. A checkpoint is marked in the transaction log after all database changes

have been written to disk.

Nimble Snapshot Backups for Simple Recovery Model Databases

For most SQL Server protection scenarios, the simple recovery

model provides the best combination of management simplicity

and data protection. The simple recovery model logs transactions

and keeps them until a checkpoint occurs. It then truncates the transaction log up to the checkpoint

which keeps them from growing out of control. Using the simple recovery model does not permit

restoration of transactions that have occurred in between backups, so some data loss is assumed

using this recovery model. Nimble snapshot backups perform a nearly instant full backup of the

database, which provides a maintenance-free method of managing a SQL Server database backup

because logs are truncated regularly. SQL Server System databases (Master, Model, MSDB, etc.) are

configured to use the simple recovery model by default. The diagram shows Nimble snapshot backups

of the entire database at 15 minute intervals. Using Nimble snapshot backup at short and regular

intervals provides a good balance of managability and very granular point-in-time restoration in the

shortest time possible. If your database cannot permit loss of the most recent transactions that occur

All Transactions Logged

Truncate on Checkpoint

N I M B L E S T O R A G E B E S T P R A C T I C E S G U I D E : M I C R O S O F T S Q L S E R V E R 9

between Nimble snapshot backups then you must use the SQL Server Full Recovery Model.

Protecting Full Recovery Model Databases

If you require recovery of transactions that have occurred after

the most recent snapshot, then you should use the Full

Recovery model and periodically perform full backup and

transaction log backups using SQL Server native tools. SQL Server native backup tools permit recovery

of its native full backup and subsequent transaction log backups, including the tail log. Refer to the

Microsoft SQL Server documentation for the version of your database software, the SQL Server 2008

R2 documentation is located at the following link:

(http://msdn.microsoft.com/en-us/library/ms190217.aspx).

In addition to SQL Server native backups, use Nimble snapshot backups to provide replication

functionality for disaster recovery.

Nimble Snapshot Backups for Bulk-Logged Recovery Model Databases

The bulk-logged recovery model is used primarily for inserting a large amount of data into a database

as quickly as possible. This model is used for objects such as large databases (LDB) for Data Marts

and Data Warehouses. Bulk-logged backups can also perform quickly by avoiding transaction log writes

for database operations such as SELECT INTO, CREATE INDEX, as well as text and image operations. If

the database is damaged for any reason during the bulk-

logged operation, then work may have to be redone, which is

why this model isn’t used as frequently outside of Large

Database applications. To minimize the impact of an error during a bulk-logged operation, you should

always perform a backup using the methods appropriate for the recovery model that your database

uses if it is not always in the Bulk-Logged Recovery model.

All Transactions Logged

No Truncate on Checkpoint

Some Transactions Logged

No Truncate on Checkpoint

http://msdn.microsoft.com/en-us/library/ms190217.aspx

N I M B L E S T O R A G E B E S T P R A C T I C E S G U I D E : M I C R O S O F T S Q L S E R V E R 1 0

Better SQL Server Recovery

Restoration of data is the true test of a backup solution; especially how quickly data can be recovered

and put back into production. As we’ve seen in the Better Database Backups section, Nimble Storage

arrays can perform near-instantaneous full database backups at short, regular intervals. Nimble arrays

also allow you to recover your data by creating a zero-copy clone and mounting it to a SQL Server host.

Zero-copy clones provide instantaneous and extremely space efficient ‘clones’ of the production

database. These clones are fully read-writable copies of the original database, but have the benefit of

occupying almost zero storage capacity thanks to Nimble’s efficient cloning technology. The Nimble

Storage CS-Series Administrator’s Guide details the steps to create a clone for restoration in the

section “Using a Nimble array snapshot to recover a SQL server database.” Using clones allows you to

perform restorations and other use cases that will

maximize the benefit of Nimble Storage within your

organization.

If you plan to perform a full database restoration, then

you can detach the existing database that you wish to

restore. Copy the database and transaction log files from

the cloned restoration volume to the production volume

and overwrite the existing files. Attach the recovered

database and continue working.

For more advanced database object-level restoration

capabilities, you can leave the production database

untouched and attach the recovery database temporarily

from the cloned restoration volume. Open the SQL

Server Management Studio and click the New Query

button on the toolbar. Then use the following SQL Server

commands to attach the recovery database with a

different database name (RecoveryDB) than the

production database.

CREATE DATABASE RecoveryDB

 ON

(NAME = RecoveryDB, FILENAME =

 'E:\SQL Server\Databases\ProductionDB.mdf'),

(NAME = RecoveryDB_Log, FILENAME =

 'M:\SQL Server\Transaction Logs\ProductionDB_log.ldf')

 FOR ATTACH

Database Object Restoration

 Use this scenario to recover from erroneous database object operations such as truncating a table or

deleting a stored procedure. Use a SQL query to copy the database object from the cloned recovery

database to the production database. For example:

insert into ProductionDB.dbo.Catalog

select * from RecoveryDB.dbo.Catalog

N I M B L E S T O R A G E B E S T P R A C T I C E S G U I D E : M I C R O S O F T S Q L S E R V E R 1 1

Data Restoration

This works similarly to Database Object Restoration but uses a SQL query that restores certain data

points that were lost due to user error, for example, the recovery of an accidental Order deletion in an

ERP or CRM database from a recent snapshot backup.

update ProductionDB.dbo.Customer

set LastName = (

select LastName

from RecoveryDB.dbo.LastName

where CustomerID = 8309485)

where CustomerID = 8309485

Report Server Off-loading

Many organizations find that as their databases

grow over time, their reporting needs begin to

adversely compete for processing and storage

resources with the production use of the system.

Off-loading scheduled and ad-hoc reporting to

another system reduces the competition for

system resources and extends to useful life of the

production system. It also gives end-users quicker

response times that increase their productivity.

You can create a volume clone of your production

database and attach it to the reporting server. This

use case also provides off-site reporting

functionality using Nimble’s WAN-optimized

replication technology. This replication technology

dramatically reduces the TCO (total cost of

ownership) for off-site replication.

Development and Q/A Testing

Another popular use case is to use a production clone for Quality Assurance and Development Testing.

This model is similar to the Report Server Off-loading such that the Nimble volume clone is attached to

another server, but it is usually refreshed less frequently than the Report Server. The database is an

identical copy of the production database and allows more complete testing without the risk of

adversely affecting the production system.

N I M B L E S T O R A G E B E S T P R A C T I C E S G U I D E : M I C R O S O F T S Q L S E R V E R 1 2

Nimble Storage, Inc.

2740 Zanker Road, San Jose, CA 95134

Tel: 408-432-9600; 877-364-6253) | www.nimblestorage.com | info@nimblestorage.com

© 2012 Nimble Storage, Inc. All rights reserved. CASL is a trademark of Nimble Storage Inc. BPG-SQL-0812

